XXXI Congreso Argentino de Química 25 al 28 de Octubre de 2016 Asociación Química Argentina Sánchez de Bustamante 1749 – Ciudad de Buenos Aires – Argentina The Journal of The Argentine Chemical Society Vol. 103 (1-2) January – December 2016 ISSN: 1852 -1207 Anales de la Asociación Química Argentina AAQAE 095 - 196

DEPOSICIÓN DE NIQUEL SOBRE ÓXIDO DE CERIO

Dan Rajsfus¹, Agustín Salcedo¹, Brian Milberg¹, Beatriz Irigoyen^{1*}

¹ITHES, Departamento de Ingeniería Química, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, (1428) Capital Federal, Argentina. ^{*}beatriz@di.fcen.uba.ar

1. Introducción

Actualmente concitan gran atención, tanto la búsqueda de alternativas viables para abastecer la demanda energética como el desarrollo de catalizadores más económicos, activos y selectivos que los actuales. Uno de los principales desafíos es sustituir metales nobles (Pt, Rh) por otros elementos más accesibles y económicos, de similar desempeño catalítico.

El Ni, abundante y económico, es ampliamente empleado en el reformado de alcoholes e hidrocarburos; pero se desactiva por deposición de carbón y envenenamiento con azufre. Esto puede mitigarse empleando soportes basados en óxido de cerio o ceria (CeO₂). El CeO₂ actuando como soporte del Ni, mejora su estabilidad y rendimiento catalítico. La reactividad del sistema Ni/CeO₂ está relacionada con la elevada capacidad de la ceria para ceder y almacenar oxígeno, originada por la fácil transición Ce⁴⁺ \rightarrow Ce³⁺.

Entonces, en este trabajo presentamos un estudio teórico detallado del sistema Ni/CeO₂. Este estudio involucró la realización de cálculos químico-cuánticos, mediante el empleo de la teoría del funcional de la densidad con la corrección de Hubbard (DFT+U), para estudiar las interacciones metal–soporte y las modificaciones resultantes en la estructura y propiedades electrónicas del CeO₂.

2. Modelo y método de cálculo

La Fig. 1, muestra una vista de frente de la superficie (111), una de las más estables dentro de las de bajo índice.

Figura 1. Superficie CeO₂(111): vista frontal.

Los cálculos de energía se efectuaron aplicando la teoría del funcional de la densidad (DFT), implementada con el código Viena Ab-initio Simulation Package (VASP) [1,2]. Se empleó la aproximación GGA, el funcional PBE y un valor de corte para la energía cinética de 500 eV. Los electrones del core se trataron con la aproximación PAW. Como electrones de valencia se tomaron: Ce (5s), (5p), (5d), (4f), (6s); O (2s), (2p); Ni (3d), (4s). Se utilizó una grilla de 3x3x1 puntos k para la integración en la zona de Brillouin (esquema Monkhorst-Pack). Asimismo, se introdujo la corrección de Hubbard "U" para los electrones Ce(4f), tomando un valor U = 5,0 eV. Las cargas y el spin de los iones del sistema se estudiaron mediante un análisis de carga Bader [3, 4].

3. Resultados y discusión

En este trabajo se estudió la deposición de partículas dispersas de Ni (aislado y clusters de cuatro Ni) sobre la superficie $CeO_2(111)$. Se computaron diferentes disposiciones geométricas del Ni, siendo más estables *hollow*, *clúster piramidal* y *clúster romboidal*.

La energía de adsorción del Ni ($\Delta E_{ads,Ni}$), fue calculada como la diferencia entre la energía total del sistema Ni_y/CeO₂(111) y la suma de las energías de la superficie CeO₂(111) y del agregado de Ni_y (y = 1 ó 4). Para los clústers Ni₄ se descontó su energía de agregación.

Hollow: el $\Delta E_{ads,Ni}$ para esta configuración es -3,95eV. El Ni se ubicó en el centro del triángulo formado por O₂, O₄ y O₈, ocupando el hueco (*hollow*) como muestra la Fig. 2. La distancia Ni-O más próximos es 1,89 Å. El análisis de cargas Bader (ver Tabla 1) dio un valor de 8,9e para el Ni, siendo su densidad de spin de 1,41 µB. Así, el Ni fue caracterizado Ni²⁺ y se identificaron dos iones Ce³⁺ (Ce₅ y Ce₆) en el soporte.

Figura 2. Sistema Ni_{Hollow}/CeO₂(111)

Tabla 1. Análisis de cargas Bader

NiO	Nibulk	Nihollow/CeO2	Ni4pyr/CeO2				Ni4rom/CeO2			
Ni	Ni	Nihollow	NiPyr1	NiPyr2	NiPyr3	NiPyr4top	NiRom1	NiRom2	NiRom3	NiRom4
8.9	10	8.9	9.7	9.7	9.7	10	9.7	9.6	9.6	9.7

XXXI Congreso Argentino de Química 25 al 28 de Octubre de 2016 Asociación Química Argentina Sánchez de Bustamante 1749 – Ciudad de Buenos Aires – Argentina The Journal of The Argentine Chemical Society Vol. 103 (1-2) January – December 2016 ISSN: 1852 -1207 Anales de la Asociación Química Argentina AAQAE 095 - 196

*Clúster Ni*₄ *Piramidal*: el $\Delta E_{ads,Ni4}$ para esta estructura es -6,01eV (-1,5 eV/Ni). La Fig. 3 muestra los cuatro átomos de Ni dispuestos en forma piramidal con una distancia de enlace Ni-Ni de 2,3 Å, similar a la reportada en la literatura [5]. La distancia entre los Ni_{sup} y O₂, O₄ u O₈ es 1,8 Å. El Ni restante está en el centro del triángulo de Ni_{sup} (ver Fig. 3). El análisis Bader (ver Tabla 1) indica que los iones Ni_{sup} adoptan el estado Ni¹⁺; mientras que, el Ni central estaría como Ni⁰.

Figura 3. Sistema Ni_{4-Piramidal}/CeO₂(111).

Sin embargo, en la superficie sólo se reducen los cationes Ce₈ y Ce₉. El gráfico de diferencia de carga de la Fig. 4, muestra densidad electrónica (0,11e) en los huecos Ni_{sup}-O. Esta deslocalización de carga ha sido observada previamente para el sistema NiO [6].

Figura 4. Magnetización del sistema Ni_{4-Piramidal}/CeO₂(111).

Clúster Ni₄ Romboidal: el $\Delta E_{ads,Ni4}$ de este sistema es -6,44 eV (-1,61eV/Ni). Los cuatro Ni se ubican sobre la ceria, a 1,8 Å de O₁, O₂, O₃ y O₄ (ver Fig. 5). La distancia Ni-Ni es 2,33 Å.

El análisis Bader indica que los Ni_{sup} son Ni^{1+} (ver Tabla 1). En la superficie sólo se identificaron tres Ce^{3+} (Ce_1 , Ce_2 , Ce_8), por lo que la densidad electrónica en los huecos Ni_{sup} -O (ver Fig. 6) es 0,76e.

XXXI Congreso Argentino de Química 25 al 28 de Octubre de 2016 Asociación Química Argentina Sánchez de Bustamante 1749 – Ciudad de Buenos Aires – Argentina The Journal of The Argentine Chemical Society Vol. 103 (1-2) January – December 2016 ISSN: 1852 -1207 Anales de la Asociación Química Argentina AAQAE 095 - 196

Figura 5. Sistema Ni_{4-Romboidal}/CeO₂(111).

Figura 6. Magnetización del sistema Ni_{4-Romboidal}/CeO₂(111).

4. Conclusiones

Nuestro estudio de la deposición de Ni sobre la superficie CeO₂(111) muestra una fuerte interacción entre la fase activa Ni y el soporte. En cuanto a la formación de clústers, los valores calculados de energía de adsorción indican que la disposición romboidal es 0,43 eV más estable que la piramidal. En la primera configuración, los cuatro iones Ni adoptan un estado de oxidación Ni¹⁺. En cambio, en la disposición piramidal se encontraron tres iones Ni¹⁺ y uno Ni⁰. En ambos casos, se observa deslocalización de densidad electrónica.

Referencias

- [1] G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15.
- [2] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558.
- [3] R.F.W. Bader, Chem. Rev. 91 (1991) 893.
- [4] W. Tang, E. Sanville, G.J. Henkelman, Phys.: Condens. Mat. 21 (2009) 084204.
- [5] G. Schmid, Clusters and Colloids: From Theory to Applications (1994).
- [6] A. M. Ferrari, C. Pisani, F. Cinquini, L. Giordano, G. Pacchioni, J. Chem. Phys. 127 (2007) 174711.